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ON THE STABILITY OF MIXED CONVECTIVE MOTIONS IN A VERTICAL 
LAYER WITH WAVE-LIKE BOUNDARIES* 

L.P. VOZOVOI and A.A. NF.POMNYASHCHII 

The stability of the stationary and oscillatory convective motions which 
develop in a vertical layer with periodically curved boundaries is studied 
for the case of longitudinal fluid injection. The amplitude of the boundary 
undulations and the flow of fluid along the layer are both assumed to be 
small, and methods of perturbation theory are used. The characteristic 
properties of the incremental spectrum of the spatially periodic motions 
are studied and the most dangerous types of perturbations as well as the 
forms of the stability regions are determined. 

Theoretical investigations of the effect of spatial inhomweneity of 
the boundary conditions on the stability of convection were sparse, and they 
deal mainly with horizontal layers of fluid /l-3/. Stationary, spatially 
periodic motions in a vertical layer with curved boundaries were investigated 
in /4/ for the case of free convection (when the flow was closed), and 
their stability was investigated in /5/. It was established that the 
presence of a small but finite flow of fluid along the layer leads to an 
increase in the number of different modes of flow, and to the appearance 
of non-stationary convective motions in the region near the threshold. 

1. Consider a two-dimensional flow of fluid in an infinite vertical layer at whose solid 
boundaries 

s=*+?lccs+ 

different constant temperatures T = &S are maintained. The flow of a fluid across the 
transverse cross-sectionisequal to Q, The system of convection equations has the following 
form in dimensionless variables: 

(1.1) 

Here 10 is the stream function, T is temperature, G is the Grashof number, and P is the 
Prandtl number. The boundary conditions are 

“=-(I-~cosk,y), T--l, I+~,+o (1.2) 

where q = Qh denotes the dimensionless fluid flow. 

2. When 11 = q = 0, problem (l.l), (1.2) has the solution 

Uo = f$:o, To), $0 = -&- (I- .z2)? To = 5 (2.1) 

corresponding to plane parallel flow. When the values of the Prandtl number P are moderate, 
the solution is monotonically unstable with respect to parturbations with wave number k, when 
',"z ;hresho!d Grashof number G,(k) is exceeded. The neutral curve G,(k) has a minimum 

at some k = k, /7/. In the case when g# 0, 
flow is oscillatory, and for small g /8/u 

the instability of the plane parallel 

Below we study the convection modes for values of G close to 
q and 11 are small, but finite. 

G,, which are realized when 
The method of expansion in amplitude of the non-plane parallel 
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component e of the motion used earlier /5/ for the case w-hen 4=0, is employed. We 
introduce the following coordinate transformationwhich straightens the layer boundaries: 

y' = y, 5' = x/(1 -_rl cos k,y) 

We shall seek the solution u =($, 2')of the problem (1.11, (1.2) written in the new 
coordinates in the form 

lJ=Uof 5 &VJ, 
"=I 

Assuming that G -G, = O(G), we introduce the notation 

G -G, = eBG, 

(2.2) 

(2.3) 

(2.4) 

The dimensionless fluid flow q is an independent parameter. Nevertheless, we shall first 
consider, in detail as in /6/, the case when the quantity q is small and together with G -CC, 
of order ez 

q = s% (2.5) 

We will also assume that the wave number characterizing the curvature of the boundaries 

k, is close to k, 
k, -kc = dc, (2.6) 

Following /9/, we assume that the functions LJ, depend on two spatial scales y, = y’, y, = 
sy'. and several time scales tn = e"t, and make the following substitution in the equations: 

. 
a 

dy’- dye 
-"+e-&, a 3i= ten-& 

n=cl n 
(2.7) 

We will write the relation connecting the parameters e,n and G in the form 
m 

r\= ~~lsnn(n)(G) (2.8) 

Substituting (2.3)-(2-S) into (1.11, (1.2) and taking (2.2) into account, we obtain a 
boundary value problem of the n-th order in e, and find ncn) from the condition for it to 
be solvable. 

To the first order in e the solution has the form 

U, = 2 Re [a, (yl, t,, t,, . . .) u (5’) exp (ik,y,)l, rl(l) = 0 

where u = (q,I)) is a function describing a neutral perturbation of a plane parallel flow in a 
layer with plane boundaries. To the second order we have 

$%'=0, dal -0 
dtl- 

Finally, the condition that the equations have a solution to the third order (for more 

detail see /5/), yields 

I 3% at = R s + (JG* + iBq*) al - S I al I2 al + 4 exp (iby, ) (2.9) I 

where I,R, J,S,D are real constants obtained in /5/, and (r&,6,) is a solution of the conjugate 
linear problem. The amplitude equation (2.9) differs from one obtained earlier /6/ for the 
case of mixed convection, inthepresenceofthe additional dispersion-type term R@a,18y12 on 
the right hand side. Its appearance is related to the fact that the amplitude a, depends not 
only on the time (as was assumed in /6/), but is also a slow function of the longitudinal 

coordinate Y, = ey' (in this case a, has the meaning of the envelope of a wave packet with 
the carrier wave number k,). Such a generalization makes possible the study of the stability 
of spatially periodic motions not only under perturbations with the same period, but also 
under non-periodic, general-type perturbations which have the form of Flocquet functions. We 
also note that the presence of the complex term i&as, in the amplitude equation of /6/ was 
connected with the peristaltic pumping caused by the wave-like motion of the layer boundaries. 
The appearance of the analogous term in the present paper is caused by the forced pumping of 

the fluid relative to the fixed curved boundaries. 
Assuming, to be specific, that &,> 0, we transform the scale 

2 = a, (S/Bq,)‘Iz, z = Bq;t,ll, Y = y, (Uq2/R)“* 

to reduce equation (2-9) to the form 

CYZ _=- 
dr 

;?y* +(~+i)Z-~Z~~Z+6cxp(IK,Y) !“.lCI) 
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y = J (G -G,)IBq, K, = (k, -k,) (R/Bq)‘I: 

6 = ~3DS”*I(Bq,)“I~ 

Equation (2.10) is derived under assumption (2.5). In this case the time scales 

determining thegrowthof the perturbation amplitude and change of its phase (characterized 
by the increment and the frequency) are of the same order, and the equations are found to be 
most interesting. The case when q>S (strong pumping of fluid) corresponds to the limit 
y-+0,6+0 and can also be analysed with help of (2.10). If on the other hand q< ea, 
then the term containing qz vanishes from (2.9) and we have the case studied earlier in /5/. 

3, Solutions of (2.10) of the form 

2 = z(r)exp (iK,Y) (3.1) 

where z(r) satisfy the equation 

dz/d~=(~+i)z-~~~~z+t-,~=y-K~’ (3.2) 

correspond to spatially peridoic solutions of the problem (1.11, (1.2) with period 2&k,. 
Figure 1 shows schematically the parametric representation of Eq.(3.2), established in /6/. 
In theregionbetween the lines 1 and 2 described by the formula 

r =l-,jQ, 6*= -& 1r,(rl+9)~%-33)'~~1 (3.3) 

the equation has three stationary solutions , and one solution outside this region. The 
stationary solutions 

z = x exp(icp) (3.4) 

are determined by the equations 

r = x* _+ (621x2 - ip, tg up = --l/p -x2) (3.5) 

Moreover, a cycle exists within the cross-hatchedregion in Fig. 1. Boundary 3 of this 
region is described by the equation 

r = r. (61, 62 = vs r. (roa + 4) (3.6) 

6 and boundary 4 was found in /6/ by numerical methods. The values 
of the coordinate 6 for the points P,, P,, P, and P, are, 
respectively, 

Fig. 1 

4.. We will now consider the stability of the spatially periodic motions. We shall deal 
with the stability of the stationary motions, and in Sect.5 with the stability of the 
oscillatory motions corresponding to the time-periodic solutions of (3.6). 

Let us impose a small perturbation 5 on the basic solution 2, = zexp (iK,Y), z = X exp(icp). 
Substituting Z .= Z, + 5 into (2.10) and linearizing over 5, we obtain 

Putting now 

3=(V + i)6 + $-.X2(2F, +exp[2i(cp+ K,Y)]& (4.1) 

E: = aexp ii (K, + K)Y+hzl+6exp[i(K,-K)Y+&l (4.2) 
we arrive at the homogeneous system of equations for the coefficients a and b. The condition 
that it has a solution, yields the following expression for the increment h.: 

k+ = y - K,’ - 2X2 - K2 + IX4 + (2K,K - i)V (4.3) 
The formula generalizes (3.2) of /6/ where the case of 

the same period as the basic motion) was considered. 
K = 0 (the perturbations have 

We note that when 
becomes 

K,=O (k, = k,), (4.3) 

A.+ = y - 2X" - Ka -+ (X’ - f)‘l. (4.4) 

We see that in this case we have K = K, = 0 f or the most dangerous perturbation, so 
that the investigation of the stability reduces to that carried out in /6/. 

The complete computation of the region of stability of stationary solutions in the 
Ko2) plane for a given 6, requires the determination of the sign of the real part of 

(r, 

increment 
the 
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Be A+ = y - K,+ - 2X2 - Ka + -!- [A + (A? + lCjK*K,,?)‘i~]‘l~ 
VT 

A = Xp - 1 + 4K2K,2 

(4.5) 

Here Xa is a known function of 6, y. and K,% is defined implicitly by the first 
equation of (3.5). 

Suppose that initially 6 < 6,. In this case the stationary solution is unique for any 
We can find the asymptotic form of the boundary of stability for small K,. 

&K,’ < 1 - X4 
Putting 

we obtain from the condition a Re h+laK = 0 the quantity K = K, for the 
most dangerous perturbation 

K, = K, (1 - X4)-‘/* (4.6) 

The equation of the boundary of stability Reh,(K,) = 0 reduces to second order terms, to 
the form 

(4.7) 

where I',, (6) is given by (3.6) I The asymptotic form of the boundary of stability for large 

K, is also easily obtained 

K, = K,, y = 2PK,' (4.8) 

We see that for large K,mko -k, the effect of external modulation on the stability of 
motion is weakened, and one of the wave numbers of the critical perturbation tends to kc. A 
typical boundary of stability when 6 < 6, constructed by numerical methods is shown in Fig.2 
(the line 1; 6 = 1). 

When 6 becomes greater than 6,, three stationary solutions appear in a certain region 

(Y, K,') . As was shown in /6/, one of them (the one with an intermediate value of Xa) is 
always unstable. The remaining two solutions have a region of stability with respect to the 
perturbations, with K = 0, and the solution with the largest value of X2 is stable for any 

6 > 61 in the region --rn<<<*, while the solution with the smallest value of X2 is 
stable when 6,<6<6, in the region r_<y < I'@. 

Figure 3 shows how the pattern of stability regions changes as 6 increases in the case 
when Kf 0, for both types of motion (the fragment a corresponds to 6 = 6,). Line 2 

represents the boundary of stability of the mode with largest X’, and lines 1 and 3 the 
mode with the smallest. The same notation is used in Fig. 4-6 which show the boundaries of 
the regions of stability for 6 = 1.278, S = 1.304, 6 = 3.161. 

Note that the region of stability of motion with the smallest X*is not large, and 
vanishes when s> 6,. We also note that when xa>1, the asymptote of the boundary of the 

region of stability (for the mode with maximum value of Xa) differs from (4.6), !4.7)- Namely, 
the analysis of the dependence of the increment h, (K) within the limits 4KZKoa < X’ - 1 , 

shows that when 
KO<K, = [+X-~(X4-1~%]"* (4.9) 

the boundary of stability of the stationary solutions is determined by the perturbations with 

K, =O, and coincides with the boundary of their existence y = r+(6) f Ko2, while when 

K,>K, 1 the most dangerous perturbations are those with 

K, = (X4 - 1) (.T& + 4)-‘/a (K, - K,,,)‘l* Kg” 

Thus we have, in the interval K,<K,, a singular "capture of the wave number“ where 

the resonant harmonic tunes to the external perturbation. 
For fairly large 6 (slow oscillation_ 4 of the fluid) the boundary of stability takes the 

form shown in Fig.6 (curve 2;6 = 3.162). The characteristic feature of this graph consists 
of the existence of the interval of wave numbers Kl<Ko<K, within which the stationary 
motion first loses its stability as y increases (point A), then regains it (point B) and 

finallv loses it aaain (ooint C), 
7 

1.83 

1.37 

Fig. 2 Fig. 4 
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Fig. 5 Fig. 6 

5. Let u5 now consider the stability of non-stationary convection modes corresponding 
to the time-periodic solutions of (3.2). The evolution of an infinitesimal perturbation is 
described, as before, by (4.X), but in this Case 2 = Xexp(irp) is a periodic functions of 
time. Let us write the perturbation in the form 

b = a (z) exp Ii (K. + K) Yl + b (z) exp [i (K, - K) I’1 8.4) 

The functions a(-c),b(z) satisfy the following system of equations with peridoic coeffi- 
cients: 

daidz = [y - (Ii, -f- K)2 - .2X% -F_ il Q - X2 exp (2icp) 6 

difildz = fy - (K, - KfZ - 2X2 - il 6 - X2 exp (-Zip) e 
(5.2) 

whose fundamental. solutions have the form of Flocquet functions 

(5.3) 

where T is the period of the functions 5. Theconditionof stability of periodic solution is 
Reh (K) < 0 for all K. * 

The boundary of the region of stability of oscillatory motions is obtained most Simply 
when S<%. IJI this case natural osillations develop when r'>r,@)$- K,‘, r,(6) = 28’, and 
are described by the formula /6/ 

z=(l?-- 265)'hcos z + i [6 -+ (r - 2P)y sin a, r = y - K,5 

For 4 we find 

G 3T -...(y - 2ij5 - K,2 -f- K=) &- [(y - 2P - K02)2 + 4KoaKaP 

and this implies that the cycles are stable when y > 262 + 3&Z. 
System (5.2) was integrated numerically for finite 6. The increment of the mostrapidly 

increasing mode was calculated using the formula 

Re?+,=hm ~~al\~t~-C-V 
f--r00 21 laU)P 

When 6<6,, the form of the region of stability of the cycles is qualitatively the 
same as in the case when 644 Fig.2, curve 4:6=1 1. A5 6 approaches 6, (see Fig. 11, 
the boundary of the region of stability takes the form shown in Fig, 4 (line 4;6= 1.278). When 
&<a<%* Fig. 1 shows that the cycle exists in two intervals of variation of r, separated 
by a region (between the cuxves 4 and 2) within which no oscillatory mode exists. Similarly, 
two regions of stability of the cycles exist (Fig. 5; ij=1.304), one of which, bounded by curve 
4, is adjacent to the region of stability of the stationary mode with minimum amplitude, and 
the other (boundary curve 5) to the region with maximum amplitude. Note that the lines 2 and 
5 intersect when I&= h, (see formula (4.9)), so that the oscillatory motions &<K, are 
stable everywhere within the domain in which they exist. 
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When &>8,, a unique boundary of the region of the cycle stability remains (Fig. 6, 
curve 5; 6= 3.161) with a break when K,= K,. In the limit when 6%1, we use expansions 
in terms of the parameter W to obtain the expression for the increment 

x* = -(y - K02 + K*) + I(? - i&z)* + 4K,WI"* 

and this implies that the boundary of the region of stability of an oscillatory region has 
the form ‘p= 3K,,a when &a) 6%. When Kc? < 6=/Z , the boundary coincides with the boundary 
of existence of the cycles Y=@+ K,*. 
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ANKLE SUP~RCRITI~AL DISSIPATIVE STRUCTURES OIY CURVE3 SURFACES * 

B.A. MALOMED and I.E. STAROSEL'SKII 

Cellular, low amplitude structures appearing at cylindrical and spherical 
frontsofgaseous combustion and laser evaporation are described. In the 
case of a spherical front all these structures are found to be unstable.. 
When the cylindrical front of gaseous combustion is expanded, we must 
expect the quasi one-dimensional structure homogeneous with respect to 
the ignorable coordinate to be replaced by a parquet-like pattern of 
rectangular cells, and later to reach a non-stationary regime.. On the 

cylindrical front of laser evaporation the quasi one-dimensional structure 
of maximum amplitude is globally stable. 

The best known hydrodynamic example of a kinetic problem connected with 
the formation of dissipative structures i.e. thermodynamically non- 
equilibrium stationary structures appearing as a result of the development 

of aperiodic instability in a spatially homogeneous state, are Benard cells 
/1,2/. New problems of this kind are connected with the instability of 
plane fronts of laser evaporation of condensed material, and of gaseous 
combustion /3-5/. The instability is aperiodic and appears at finite 
values of the wave number of the perturbation representing curvature of a 
plane front. The development of the instability leads to the formation of 
a stationary, periodically curved front /3/_ 

The purpose of this paper is to investigate such structures and their 

stability on cylindrical and spherical surfaces, and this corresponds to 


